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Output Feedback Boundary Control of a Heat PDE Sandwiched
Between Two ODEs

Ji Wang

Abstract—We present designs for exponential stabilization of an
ordinary differential equation (ODE)-heat partial differential equa-
tion (PDE)-ODE coupled system where the control actuation only
acts in one ODE. The combination of PDE backstepping and ODE
backstepping is employed in a state feedback control law and in an
observer that estimates PDE and two ODE states using only one
PDE boundary measurement. Based on the state feedback control
law and the observer, the output feedback control law is then pro-
posed. The exponential stability of the closed-loop system and the
boundedness and exponential convergence of the control law are
proved via Lyapunov analysis. Finally, numerical simulations vali-
date the effectiveness of this method for the “sandwiched” system.

Index Terms—Backstepping, distributed parameter systems,
ODE-PDE-ODE, parabolic systems.

I. INTRODUCTION
A. Control of Parabolic Partial Differential Equations (PDEs)

Parabolic PDEs are predominately used in describing fluid, thermal,
and chemical dynamics, including many applications of sea ice melting
and freezing [28], continuous casting of steel [20], and lithium-ion
batteries [15]. These therefore give rise to related important control and
estimation problems, i.e., the boundary control and state observation
of parabolic PDEs in [S5]-[8], [11], [14], [18], [19], and [2], [22], [23]
respectively.

B. Control of Parabolic PDE-ODE Systems

In addition to the aforementioned works on parabolic PDEs, top-
ics concerning parabolic PDE-ODE coupled systems are also popular,
which have rich physical background, such as coupled electromag-
netic, coupled mechanical, and coupled chemical reactions [25]. Using
the backstepping method, state-feedback and output-feedback control
designs of a class of heat PDE-ODE coupled systems were presented
in [24]-[26]. The problem of state observation is addressed for some
parabolic PDE-ODE models in [1] and [27]. The sliding model con-
trol was proposed to achieve boundary feedback stabilization of a heat
PDE-ODE cascade system with external disturbances in [29].

C. Control of ODE-PDE-ODE Systems

All aforementioned works consider actuation of PDE boundaries and
ignore the dynamics of the actuator. However, sometimes the actuator
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dynamics may not be neglected, especially when dominant time con-
stants of the actuator are closed to those of the plant. Considering the
parabolic PDE-ODE coupled system with ODE actuator dynamics, it
gives rise to a more challenging control/estimation problem of an ODE-
PDE-ODE “sandwiched” system. Fewer attempts have been made on
the boundary control of such an ODE-PDE-ODE system or PDE sys-
tems following ODE actuator dynamics where the controller acts. The
boundary control of a viscous Burgers’ equation with an integration
at the input, which is regarded as a first-order linear ODE in the input
channel, was considered in [17]. Backstepping state feedback control
design for a transport PDE-ODE system where an integration at the
input of the transport PDE was proposed in [9]. The control problem
of an ODE with input delay and unmodeled bandwidth limiting actu-
ator dynamics, which is represented by an ODE-transport PDE-ODE
system where the input ODE is first order, is successfully addressed in
[13]. Stabilization of 2 x 2 coupled linear first-order hyperbolic PDEs
sandwiched around two ODEs was also achieved in [31].

In this paper, we use the combination of ODE backstepping and PDE
backstepping methods to exponentially stabilize an ODE-heat PDE-
ODE coupled system where the two ODEs are of arbitrary orders. An
observer is designed to estimate all PDE and ODE states using only
one PDE boundary value and then the observer-based output feedback
law is proposed.

D. Main Contributions

1) This is the first result of stabilizing such an ODE-parabolic PDE-
ODE “sandwiched” system where the control action only acts in
one ODE.

2) Compared with our previous work [31] where a state-feedback con-
trol law was designed to stabilize the ODE-hyperbolic PDE-ODE
system with the second-order input ODE and only a sketch of the
design and analysis for an arbitrary-order input ODE was provided,
in the present paper, we extend the hyperbolic PDE to a parabolic
PDE, where challenges appear because of the higher-order spatial
derivative and the inconformity between the orders of time and
spatial derivatives. In addition, we design an observer to estimate
all the states of the ODE-PDE-ODE system only using one PDE
boundary value, and an output-feedback control law is proposed.
Moreover, more detailed control design and stability analysis of
the system where arbitrary-order ODEs sandwich around the PDE
are presented.

3) Compared with the previous results about stabilizing ODE-
transport PDE-ODE systems where both ODE:s are first order [4],
[9], [13], in addition to replacing the transport PDE by a heat PDE,
we achieve a more challenging and general result where the orders
of both ODEs sandwiching the PDE are arbitrary.

E. Organization

The rest of the paper is organized as follows. The concerned model
is presented in Section II. The state-feedback control design combining
the PDE backstepping and ODE backstepping is shown in Section III.
The observer design and the output-feedback control law are proposed
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in Section IV. The simulation results are provided in Section V. The
conclusion and future work are presented in Section VI.

Throughout this paper, the partial derivatives and total deriva-
tlves are denoted as f,(z,t) = gz, fi(z,t) = (,)t , O fw,t) =

mp omr ; m
et O J(o1) = Gyt f'(2) = G, f(0) =, &3 T (@) = ot
dm f( ) — T

Il. PROBLEM STATEMENT

We consider the following system where two ODEs sandwich around
a heat PDE as:

X(t) = AX(t) + Bu, (0,t) ey

w (2,) = quas (2, t) )

u(0,1) = Cx X(t) 3)

u(l,t) = C. Z(t) “

Z(t) = A Z(t) + B.U(1) )

V(x,t) € [0,1] x [0,00), where X (t) € R"*', Z(t) e R™*! are

ODE states, n,m € N*, N* denoting positive integers. u(z,t) € R
are states of the PDE. A € R"*", B € R"*! satisfy that the pair [4, B]
is controllable. Cx € R'*" and ¢ € R are arbitrary. A, € R™*™ is

010 0 0
0010 0
A, = : ©)
o000 - 1
a G 5/5 : dm—l a/m

mxXm

where @i,...,d,, are arbitrary constants. B, =[0,0,...,1]T €
R™* C, =[1,0,...,0] € R'"*™. Note that (A., B.) and (A4.,C.)
are in the controllability normal form and observability normal form,
respectively. U (t) is the control input to be designed.

The control objective is to exponentially stabilize all ODE states
Z(t), X (t) and PDE states u(z,t) by designing a control input U ()
in one ODE, and control input itself should be guaranteed exponentially
convergent as well.

The control design in this paper can be applied in the Stefan prob-
lem describing the melting or solidification mechanism with liquid-
solid dynamics [16], i.e., heat PDE-ODE, driven by a thermal actuator
described by an ODE at the boundary of the liquid phase.

Il. STATE-FEEDBACK CONTROL DESIGN

In this section, we combine the PDE backstepping (see
Section III-A) and the ODE backstepping (see Section III-B) to de-
sign a state-feedback input. Exponential stability of the state-feedback
closed-loop system is proved in Section III-C. The boundedness and
exponential convergence of the state-feedback control input is proved in
Section III-D.

A. Backstepping for PDE-ODE

We would like to use the infinite-dimensional backstepping trans-
formations [12]

we.t) = u(e,t) = [ o p)ulOdy - @)XW D
0
with the inverse transformation as

u(, t) = wiz,b) /wzy w(y, )y ~T(@)X(H) @)

to convert the original system (1)-(3) to

X(t) = (A + BK)X(t) + Bw,(0,t) )
wy (2, t) = q,, (z, 1) (10)
w(0,t) =0 (11)

where the right boundary condition w(1,¢) will be given later. A +
BK is Hurwitz by choosing the control parameter K since (A, B) is
assumed controllable.

Mapping the original system (1)—(3) and the system (9)—(11) via the
transformations (7), (8), the explicit solutions of kernels in (7) and (8)
can be obtained as (12)—(16) in [30], which ensures the invertibility and
boundedness of the backstepping transformation (7), (8). The detailed
calculations of the kernels are shown in [25]. Note that dealing with
the right boundary condition in the following steps will not affect
determination of the kernels in (7) and (8).

Letus now calculate the right boundary condition w(1, t) of (9)—(11).
The right boundary condition w(1, ¢) can be obtained by taking the m-
order time derivative of the transformation (7) at x = 1, inserting the
original right boundary condition and the inverse transformation (8).

Considering (4) and (5) with (6), the right boundary condition of the
original system can be written as

m—1

O u(l,t) = ayu(l,t) + @ 10fu(l,t) + U(t)
k=1

= au(l,t) Za 1 d" P u(1, )+ U).  (12)
Taking the m times derivative in ¢ of (7) at z = 1, we have

1
o w(lt) = o u(1.t) ~ " [ 3" oL yuly. Oy
0

2m
+q" )y (=
i=1

10, o(1,1)07™ (1, t)

2m

—(1)A™ X(t) - (qm (=

i=1

1)i8é—1 (17 O)sz—i

m

4 ‘I)(l) Z Ai*qum 7ia§(mfi)+

i=1

1)u(o,t) (13)

for m e N*, where OFu(l,t) 2 0% u(x,t)|,=1, OFu(0,t)=
OFu(x,t)|,—o. Insert (12) into (13) to replace 9" u(1, t). Then rewrite
u in (13) as w via the inverse transformation (8), where the k-order
derivative of the inverse transformation (8) in = would be used

€T

rula, 1) = (w(zat) [ b yywly, dy - r(x)X(t))

0
= O w(z,t) - / 9k (e, y)wly, H)dy

72ij

for k € N*, where y;_(x) denoting the sum of j-order deriva-
tives of ¢ (x,x) with respect to z, results from calculating
X ([, v(z, y)w(y, t)dy), as following:

J
§ : Jlai Y
i=0

)0k 7w (a,t) — diT(2)X (1) (14)

Xnj (2 TP, Y) ()~ (15)

(@.2)
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where constant coefficients 7, ; ; can be easily determined by calculat-  For clarity, (16) can be written as
ing 0% ([ ¥(x,y)w(y, t)dy) under some specific k according to the .
order of the plant. 0" w(l,t) = Bu(l,t) + Cw(0,1)
After plugging (14) into (13) where 9;" u(1, ¢) has been replaced by
(12), the right boundary condition of the system-w is obtained as / D(y Hdy + EX(t) + U(t). a7

" w(l,t)
m—1 m—1 2k—1
= | +de+1q"‘8§" Zak+lq ZXzA.; 3“ i1
2m 2m
+qrrt (_1)L81z/71 (1 1 82m L_ Z at 1 )
i=1 i=
2m —i—1
X Z X2m l.j 82"1 —imi-l w(l,t)
2m
4 _qm Z (_1)Lalz/71 (170)8jmfz
i=1
2m 2m —i—1
YO S a0

i=1

m

1) E Ail qu —iag(m —i)+1

1) i Az’—] qu —i
i=1

2(m—i)+1-1

<D

—0

X2 (m —i)+1. (0)83(”1 ”“jl} w(0,1)
2m )

[qm S (<18 (L DA (1, y) + (L, y)
i—1

l_lk“qkafki/)(l-, y) + qm 6§m ¢(17 y)

J
1
/0
m—1
+2.
k=1

1
_qm/ 82m (1 Z)w(z,y)dz w(yvt)dy
Yy

2m

NS

i=1

+ )' 9,7 ¢(1,0)d3" T (0) — ®(1)A™

1) Z Al qu —'idi(‘m —7',)+11—\(0)
i=1
2m
_ q"n (_
i=1

D'o, " o(1,1)dy" 7T (1)

m—1

—Zakﬂq &Fr(1) —a, T (1)

+ qm / 8

where some typical operators are

Ty )dy} () +U(?) (16)

OFw(1,t) £ 0k
9y 6(1,1) = 0y ¢(w,y

More details of (16) please see (21) in [30]. Note that (16) is a m-order
ODE system w(1,¢) with a number of PDE state perturbation terms.

w(z, t)]p=1, 8§w(07t) = 8fjw(z7t)|,:0

M) , d;T(0) 2 dyT () ]o—o-

Note that (17) is the right boundary condition of the system (9)—(11).
B,C,D, and £ in (17) correspond to the parts including derivative
operators in the square brackets before w(1,t), w(0,t), w(y,t), X (t)
in (16). D( ) is a function of y and & is a constant vector. Note that
Bw(1,t) & (Bw(x,t))|s=1, Cw(0,t) = (Cw(z,t))|,=

Theorem 1: Considering the system (1)-(6) and the backstepping
transformation (7), (8), (16) holds for m € N* which is the order of
the ODE (5).

Proof: The proof is provided in the proof of Theorem 1 in [30]. H

B. Backstepping for Input ODE With PDE State Perturbations

The following backstepping transformation [31] for the system-
(w(1,t),w; (1,1),...,0" "w(1,t)) (16) is made:

yi(t) = w(l,t) (18)
Y2 (t) = we (1,1) + 7 [w(1,1)] 19
Ym (t) = 8tr,n71w(17t)

+ T [w(1,t), ..., 0 2w(1,t)] (20)

where 71, ..., 7,1 defined in the following steps are the virtual con-

trols in the ODE backstepping method.

Step 1: We consider a Lyapunov function candidate as V,1 = 31 (t),
taking the derivative of which we obtain V,;, = —c,y, (t)> +
y1 (t)y2 (t) with the choice of 71 = ¢iy;(t), where ¢; is a
positive constant to be determined later.

Step 2: A Lyapunov function candidate is considered as

1 .
V2 =Vy1 + ng(t)z =

Taking the derivative of (21), we have

Vio = —ciyn (8) + y1 (8w () + 2 (£)(
Choosing 7o = 71 + y1 (t) + cay2 (¢), we have
Ve = —cimn(t)* = 2 (8)” + y2()ys(t).  (22)

Similarly, a Lyapunov function candidate is considered as

1 .
77v7tz:
5 Ym (t)

1 . 1 .
53/1(15)2 + 52/2(15)2- 1)

yj(t) — T9 +7'1)

Step 3:

1 )
+ =y (t)?

1 .
sy (t)° 3

‘/?J m 2

=V, .+

1 1
+ -+ iym -1 (t)z + §ym (t)2 .

Taking the derivative of (23), we have

(23)

Vim = —c1y1 (8)° = e292(8) = - = 1y 1 (1)°
+ Ym 1 ()Y () + Y ()9 (2)- (24)
Considering (17) and (20), (24) can be rewritten as
Vym = —c1yi(8)* — o (8)* =+ — Con 1Y 1 (£)?

o (B () + i (0 (U(t) + Bu(Lt)

1
+Cu(0.t) - / D(y)w(y,t>dy+sX<t>++,,H) 25)
0
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where
T =yt 2 () +yi () +eoyy () + s (1)
+ -+ Cm —1Ym -1 (t)a Vm Z 4. (26)

Note y!(t) denotes mn-order derivative of y;(¢), Vi =
1,....m.
Design the control input as

U(t) = —Bw(1,t) — Cw(0,t)
—Ym -1 (t) - 7.-771 -1 — CnlYm (t) (27)
Recalling (18)-(20) and (26), we know
m —1 )
Ym l( ) + Tm -1 = Z ai(ch ) Cmfl)azw(l-, t) (28)
i=0
m—1 )
Cm Ym ( cmfl)azw(lut) (29)

t) =Cm Zﬂi(017...7
i=0

where «;, (3; are constants dependingon ¢y, . . .
(27) then can be expressed as

, ¢m 1. The control law

U(t) = Lw(1,t) — Cw(0,t) (30)
where £ = —B— 7' g (e + ¢, 51)07.
Submitting (27) into (25), we get
Vim = =iy (t)? — a2 (8)? — - — Cou Y ()?
+ Ym ( ( / D(y t)dy + EX(t )) 3D

where ¢, ..., ¢, are positive constants to be determined later.

C. Control Law and Stability Analysis

Substituting the backstepping transformation (7) into (30), we get
the control input expressed by the original states

U(t) = Lu(L,1) — (£B(1) - CB(0)) X (t) — Cu(0,1)
-L / o(L y)uly, t)dy
F (u(0,t),...,02" *u(0,t)) (32)
where the function F is obtained from
F=(c [ oty ) (3)
0 z=0
with C including differential operators 7" "' @’ defined be-
fore. The pending control parameters ci,...,c, included in £
will be determined in the following stability analysis. Accord-

ing to the operators £, C, we know the signals used in the
control law (32), (33) are Z?!Fl Oiu(l,t), Z?Z'(}*I 9iu(0,t),
X(t), and u(x,t). In order to ensure the control law is suffi-
ciently regular, we will require the initial value w(z,0) to be in
H?™(0,1), which is defined as H*" (0,1) = {ulu € L*(0,1),u, €
L?(0,1),...,0°™tu € L*(0,1),02™u € L*(0,1)} for m >1,
where L?(0, 1) is the usual Hilbert space.

Theorem 2: Consider the closed-loop system consisting of the plant
(1)—(5) and the control input (32), (33) with some control parameters
Ciy...,Cn, and initial values u(z,0) € H>™ (0, 1). There exist con-
stants T, > 0, A, > 0 such that

O(t) < T,0(0)e ! (34)

1
where ©(t) = (Ilu(,£)[ + [lus (D12 + 1Z(0) +1X®OF) " |1
denotes the norm on L%(0,1), i

e., |lul| = \/fo (z,t)2dx and | - |
denotes the Euclidean norm.

Proof: We start from studying the stability of the target system. The
equivalent stability property between the target system and the original
system is ensured due to the invertibility of the PDE backstepping
transformation (7) and the ODE backstepping transformation (18)—
(20).

First, we study the stability of the PDE-ODE subsystem in the tar-
get system via Lyapunov analysis. Second, considering the Lyapunov
analysis of the input ODE in Section III-B, Lyapunov analysis of the
overall ODE-PDE-ODE system is provided, where the control param-

eters ¢y, o, . .., Cy in the control law (32) are determined.
1) Lyapunov Analysis for the PDE-ODE System: Defining
Q) = w7 + lwe (O + X (#)]° 35

consider now a Lyapunov function

Vi(t) = X (OPX (1) + Gl 0l + Sl (Ol 36)

where the matrix P = PT > 0 is the solution to the Lyapunov equation
P(A+ BK) + (A+ BK)TP = —Q, for some @ = QT > 0. The
positive parameters a, a; are to be chosen later.

From (35), we have 60y, Qo (t) < Vi (t) < 0920 (t) where 6y, 0y
are positive constants. Applying Agmon’s inequality, Young’s inequal-
ity, and Cauchy—Schwarz inequality, taking the derivative of V; ()
along the trajectories of (9)—(11), we have

) 2
0 < - (%0 5 - (et ) 0.0

1 1 )
(g —ar)q— (maoq + Eal) )”wx [

1 1 1 9

- (?hq - (mauq + Em) )err”
3
4

Anin (Q)| X () * + roagquw(1, ) + riayw, (1,t)°
37)

where —||w,, ||> < 2||w.||* — w,(0,t)? obtained from Agmon’s in-
equality [24], [25] is used. Choosing parameters a, a; to satisfy

8| PBJ?
q)‘-min (Q) '

with sufficiently large 7y, r; in (37), using Poincaré inequality, we
obtain

i) < - 5 (@ -aa- (g

g+ ——ar ) ) .|

X 0q I 1 =
4 1 1 9

_ g <(a0 — al)q — (Rauq + Eal) )Hw1||

3

— P (@)X (O = &w, (0,8)°

+rpagquw(l,t)* +riajw; (1,t)*

1 1 1
< - @ -aa- (gaoa+ ) ) o P + o)

3
4
+rpagquw(l,t)* +riajw; (1,t)*

a; > ag > ap (38)

)‘«min (Q)|X(t) ‘2 - ga Wy (05 t)z

< =MVt = Ewa (0,8) + roagquw(1, 1) + ryayw, (1,t)?

(39)

for some positive ; and &, .
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2) Lyapunov Analysis for the Overall ODE-PDE-ODE
System: Recalling (36), and define a Lyapunov function

V(t) =Vi(t) + R,V (t) (40)
where R, > 0 is to be determined later. Defining
Q1) = -, O + llw, (I +1X (@)
F () + -y (8 (41)
we have
01 Q2(t) < V() < 6,(t) (42)

with positive constants 6, , 6, . Taking the derivative of (40) and recall-
ing (31) and (39), we get
V< =M Vi(t) = &aw, (0,8)° + roaoqu(1, )’ + riayw(1,t)°

- Ry C1Y1 (t)2 — R Ca21Y2 (t)2 - Ry Cm Ym (f)2

+Ryym ( / D(z

Using (18) and (19) to replace w(1,t)?, w;(1,¢)? in (43) as
y1 ()%, 92 (t)?, applying Young’s inequality, Cauchy—Schwarz inequal-
ity, we have

(z,t)de + EX(t )) 43)

. A 1
V< B - (Juon - R lel) X0

) da
— (Rye1 —2riaic! —roanq) yi (1)* — (Ryca — 2rmar) 2 (t)*
— Ry C3Ys3 (t) — Ry Cm —1Ym -1 (t)Z

1
(2)» Oor — Ry 74 max{\D

1 1 _
_Rl Cm, T m \Y — GaWg O>t 2- 44
(e =g = 3 )i O - G0 @4
Positive constants i3, 7, should satisfy
_ )"1 901 _ )‘-1 901
T3 y Ta . (45)
2R, [ 2R, max {|D(z)[}
Choose the control parameter c,, in the control law (32) as
1 1
m > — T —— 46
¢ 47’3 + 47‘4 ( )
for m > 2 where I, should be chosen as
2 2 2
R, > max{ 1016 “'Toaoq’ may } (47)
’ C1 Co
C1,...,Cp—1 can be arbitrary posmve constants If m = 2, ¢,, would
be chosen as c,, > 271‘” + K —+ I for m = 2, with choosing
Ry > max 27‘|a|(,(1:1+10a0q
We thus achieve
V < —AV = &w, (0,8)? < —AV (48)

for some positive A.

Note that m >2 in the above-mentioned proof because
wy(1,t)* is represented by y;(t)%,y2(t)? in (44). If m =1,
as (67)-(68) in [30], w,(1,t)* can be represented by |lw|* +
| X ()2 +w(1,t)* where |X(t)%,|w]* can be “incorporated”
by —|X(¢)?, —|Jwl|® in V4, and w(1,t)? can be “incorporated” by
—y1 ()% in Vym with large enough ¢, and then (48) is also obtained.

From (41), (42), and (48), using the invertibility between
(yl (t)v s Ym (t)) and (’LU(l,t),w[ (lvt)v (RS atmilw(lvt)) via the
backstepping transformation (18)—(20), and the invertibility be-
tween the target system (w(z,t), X (¢t)) and the original system

(u(z,t), X (t)) via the backstepping transformation (7), recalling (4)—
(6), we can conclude that the (u(z,t), X (t), Z(t)) system is exponen-
tially stable in the sense of (34).

The proof of Theorem 2 is completed. |

D. Boundedness and Exponential Convergence of the Control
Input U (t)

In the last subsections, we have proposed the state-feedback control
law and proved that all PDE and ODE states are exponentially stable in
the origin in the state-feedback closed-loop system. In this subsection,
we prove the exponential convergence and boundedness of the control
input U (¢) (32) in the closed-loop system.

Theorem 3: In the closed-loop system including the plant (1)—(5)
and the control input U(t) (32), |U(t)| is bounded by Y, and is
exponentially convergent to zero in the sense of |U(t)| < T pe /!
with the positive constants A, and Y, ; which only depends on initial
values of the system.

Before the proof of Theorem 3, we present a lemma first. To in-
vestigate the boundedness and exponential convergence of the control
input (32) where the highest-order derivative terms are 9™ 1u(0, t),
02m 1y (1,t), we estimate the Lo norm of the states up to 2m-order
spatial derivatives 92" u(z, t) in the following lemma.

Lemma 1: Consider the closed-loop system consisting of the plant
(1)=(5) and the control input (32), (33) with some control parame-
ters ci, ..., Cy, and initial values u(x,0) € H*>™ (0, 1). Then, there
exist constants Y5, > 0 and Ay,, > 0 such that ZQ'" l0Lu(- )| <
Y5, e *2m ! where Y5,, only depends on initial values.

Proof: The proof is provided in the proof of Lemma 1 in [30]. W

Proof of Theorem 3: Recalling Theorem 2 and Lemma 1, we
have the exponential stability estimates in the sense of the norm
S22 19w+, t) || Using Sobolev inequality, we obtain the exponential
stability estimate in the sense of the norm ||u(-, t)||c,, ,, which gives
the boundedness and exponential convergence of U(¢) by recalling
Theorem 2. The proof of Theorem 3 is completed.

Note that when we mention the exponential stability result/estimate
in the sense of the norm N, (¢), it means there exist positive constants
Y > 0and A > 0 such that Ny (¢) < Ye ™ where Y only depends on
initial values.

Brief summary: The backstepping approach [10] has been verified as
a useful and new method for boundary control of distributed parameter
systems. In the proposed method, a PDE backstepping transformation
(7) is used to convert the original system to the system (w(z, ), X (¢))
(9)—(11) and (17), where the state matrix A + BK in (9) is Hurwitz and
the left boundary condition is w(0,¢) = 0, which are “stable like”, but
the right boundary condition (17) being a m-order ODE w(1, ¢) with a
number of PDE state perturbations. In order to form an exponentially
stable target system, an ODE backstepping transformation (18)—(20)
is adopted to convert the ODE states w(1,t),..., 0" "w(1,t) at the
right boundary to y; (¢), ...,y (t), to build an exponentially stable
system (w(x,t), X (t),y1(t), ..., Ym (t)) under some control parame-
ters ¢y, ..., c, determined by Lyapunov analysis. Through the PDE
backstepping and ODE backstepping transformations, the target system
and the control law are obtained.

Comparing with a more naive approach, which is to design an in-
termediate control law for the PDE-ODE system and the intermediate
control law to act as a reference to be tracked by the input ODE dy-
namics with m-order relative degree, the merit of the proposed design
is avoiding taking m times derivative of the “intermediate control law”
and producing high-order time derivatives of the state in the control
law, especially high-order time derivatives of boundary states.

IV. OuTPUT FEEDBACK CONTROL DESIGN

In Section III, a state-feedback control law at the input ODE is de-
signed to exponentially stabilize the original ODE-PDE-ODE “sand-
wiched” system. However, the designed state-feedback control law
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requires the distributed states u(x,t), which are always difficult to
obtain in practice. In this section, we propose an observer-based
output-feedback control law, which requires only one boundary
value as the measurement. An observer is designed to reconstruct
the distributed states u(x,t) and two ODE states Z(t), X (t) us-
ing only one boundary measurement u,(0,t) in Section IV-A.
The observer-based output feedback control law is proposed in
Section I'V-B.

A. Observer Design

Suppose only one boundary value wu,(0,t) is available for
measurement, an observer is designed to reconstruct the states
u(z,t), Z(t), X (t) in this section.

Consider the observer

X(t) = AR (£) + Buy (0,8) + Py (us (0,) — 4, (0,1))  (49)
Uy (-777 t) = Qg ("L'v t) + D1 (I) (ur (07 t) — Uy (07 t)) (50)
a(0,t) = Cx X (t), 4(1,t) = C. Z(t) (51)
Z(t) = A. Z(t) + B.U(t) + Po(u, (0,8) — 0, (0,2))  (52)

where the constant vectors Py, P, and the function p; (z) are to be
determined. Define the observer error as

(ﬁ(x,t),Z(t),f((t)) - (u(m),Z(t),X(t))
- (ﬁ(x,t),Z(t),X(t)) .

From (1)—(5) and (49)—(52), the observer error system can be written
as

(53)

X(t) = AX(t) — Pyii, (0,1) (54)
Uy (x,t) = qlg, (x,t) — p1(x)a, (0,1) (55)

a(0,t) = Cx X (1), a(1,t) = C. Z(t) (56)
Z(t) = A, Z(t) — Poii, (0, 1). (57)

We propose a transformation
w(x,t) = (x,t) +9(x)Z(t) + 0(x) X (t) (58)

where the row vectors ¥(x) and 6(z) are to be determined, to convert
the error system (54)—(57) to the target error system

Wi (x,t) = qW,y (2, 1) (59)
@(0,t) =0, w(1,t) =0 (60)
2ol ([ 8] [R][me) ) [2]

- {ig} @, (0,1) ©1)

By mapping (54)—(57) and (59)—(61), ¥(z),6(z) should satisfy the
following two ODEs:

d(x)A, —q¥"(z) =0 (62)
9(0) = 0,9(1) = —C. (63)
O(x)A — qb"(x) =0 (64)
0(0) = —Cyx,0(1) =0 (65)
and p; (=) should be chosen as
pi(z) = —0(x)Py — 0(z)Fy. (66)

Conditions (62), (64), and (66) come from achieving (59) via (58) from
(54)—(57). Conditions (63) and (65) result from (60).
The solution to (62), (63) can be represented by

o) = 0,00 [ ] 7
with F' = [0, Aq—z; 1,0] and I being an identity matrix with the appro-
priate dimension. Especially, for = 1, it holds that

9(1) = [0,9'(0)] " H _ _c.. 68)

0 z
According to Lemma 1 in [25], when if the matrix A has no eigenval-
ues of the form —k?n? fork € N

G = [0, 1" [1,0]" (69)

is a nonsingular matrix. We then have ¥'(0) = —C, G .
Therefore the solution (67) is

9(x) = [0,~-C.G 1] F* m .

Similarly, we can obtain the solution of (64) and (65) as

f(z) = |~Cx,Cx [10] N {ﬂ Gfl] oFie {(1)]

where G = [0, I]ef [I,0]" and Fy = [0, %;I,O].
Let P, P, to be chosen so that the matrix
(70)

- P,
iea B

is Hurwitz, where

o[ 8)n- (2]

(A,, B,) being supposed observable.

Thus, all the quantities needed to implement the observer (49)—(52)
are determined. We then give the following theorem, which means the
observer can effectively track the actual states in the plant (1)—(5).

Theorem 4: Supposing that the matrices A, A, have no eigenvalues
of the form —k? 7%, for k € N, consider the observer error system (54)—
(57) obtained from the observer (49)—(52) and the plant (1)—(5) with
initial values @(z,0) € H*>™(0,1) and u(z,0) € H?™(0,1). Then,
there exist constants Y, > 0 and A, > 0 such that

1

O.(t) < T, (ee(o)2 + i, (0, 0)2) Tt (71)

. ~ 2 -
where 6, (1) = (22, leta. ol + 20|+ | X0
Proof: The proof is provided in the proof of Theorem 4 in [30]. B

‘ 2

B. Observer-Based Output Feedback Control Law

Replacing the states u(z,t), X (¢) in (32) as 4(x,t), X (¢) defined
through the observer (49)—(52), we obtain the output feedback control
law

U, s (t) = Li(1,t) — Ca(0,t) — (LO(1) — CP(0)) X ()
—L/O o(L,y)aly, t)dy + F (a(0,t),...,02" 2a(0,t))  (72)

where [ = (C [()L ¢($7y)ﬁ(yat)dy) |17:0-

Under the proposed output feedback control law, the
closed-loop system, which is shown in Fig. 1, is built.
The exponential stability result of the closed-loop system
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l],3,~(t)—4-|ODE-Z(z)|—-{ Heat PDE-u(x.7) ODE-X(7) ) i
T:/—0.1 E ‘
=% u (0,7) 05
4-{ Observer-(Z,4, X) -03; . - . 5 . - 5
I time(s) time(s)
(a) (b)
Fig.1. Output-feedback closed-loop system consisting of the plant (1)— Fig. 3. Responses of the ODE state X (£) under the output-feedback

(5), observer (49)—(52), and control input (72).

u(z,t)

Fig. 2. Responses of the heat PDE states u(x,t). (a) Uncontrolled
case. (b) Controlled case.

in the sense of ([[ul O + lus (<O + IX(OF + 12O +

. 2 NN

la(, )12 + B2 + ‘X(t)‘ Z(t)‘ )7, and exponential
convergence and boundedness of U, s (¢) are obtained. Please see The-
orem 5 in [30].

V. SIMULATION

Consider the simulation example where the plant coefficients in
(D)—(5) are A=1[1,1;1,0.5], A, =[0,1;1,1], B, = B=10,1]T,
Cxy =C, =11,0]7, and ¢ = 1. Two ODEs sandwiching the heat
PDE are considered as two-order systems here, i.e., m = 2 in the
above-mentioned design and analysis, because the second-order ODE
is a classic system which can describe many actuator and sensor
dynamics. The simulation is conducted based on the finite differ-
ence method with dividing the spatial and time domains into a grid
as g,...,xy and to,...,t,+, respectively, where the time step and
space step sizes are 0.001 and 0.05. The initial conditions of the
plant are defined as u(z,0) = sin(27z), X (0) = [z, (0), 22 (0)] =
[1(0,0),0]%, Z(0) = [21(0), 22(0)]" = [u(1,0),0]". The initial con-
ditions of the observer (49)~(52) are i(z,0) = 0, X (0) = Z(0) =
[0,0]7. Choose the control parameters ¢; = ¢y = 3, K = [—~10, —5],
Py =[-2,-4]7, and P, = [—4,—12]T. Apply the output feedback
control law (72) with m = 2, which is constructed by the states
SO dba(l,t), S0, la(0,t), X(t), and d(x,t) of the observer
(49)—(52) built using the measurement u, (0, t), into the plant (1)—(5).
Note that the third-order spatial derivatives are determined by finite
difference method as

L/ - (17 tj)

Uy, t;) —3(xg1,t;) +3(zs o, t;) — d(xss,t;)
Ah3

where A is spatial step size and ¢; is the current time point. @, ,, (1, ¢;)
is used to determine U, s (£;41).

The responses of the output-feedback closed-loop system are shown
in the following. As Fig. 2 shows, the response u(z, t) of the heat PDE
exhibits unstable behavior in the uncontrolled case while the convergent
manner of the response u(z, t) is achieved when we apply the proposed
output feedback control law (72). Similarly, Figs. 3 and 4 show that
the ODE states X (t) = [z1(t), 2 (¢)]" and Z(¢) = [21(t), 22 (¢)]" are
also convergent to zero in the output-feedback closed-loop system. It
can be seen in Fig. 5(a) that the observer errors u(z,t) = u(x,t) —

control law (72). (a) 1 (¢). (b) 2 (¢).

5 40f
2
9 S o
_d -20
—40,
0 4 6 8 0 .4 6 8
time(s) time(s)
Fig. 4. Responses of the ODE state Z(¢) under the output feedback

control law (72). (a) z1 (t). (b) 22 (¢).

Fig. 5. (a) Observer errors @ = u — @ of the observer (49)—(52). (b)
Output feedback control law (72).

4(x, t) also converge fast to zero in the closed-loop system. Moreover,
Fig. 5(b) shows that the output-feedback control input are bounded and
convergent to zero.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a methodology combining PDE backstep-
ping and ODE backstepping to stabilize a parabolic PDE sandwiched
between two arbitrary-order ODEs. An observer is also designed only
using one PDE boundary value u, (0, ¢) to reconstruct all PDE and
ODE states. The observer-based output-feedback control law is pro-
posed and the exponential stability of the closed-loop system is proved
via Lyapunov analysis. Moreover, the boundedness and exponential
convergence of the designed control input is also proved in this paper.
These theoretical results are verified via the simulation as well. In the
future work, more general ODE dynamics in the input channel will be
considered in the control design.
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